terça-feira, 23 de abril de 2013

Ferro


O ferro (do latim ferrum) é um elemento químico, símbolo Fe, de número atômico 26 (26 prótons e 26 elétrons) e massa atómica 56 u. À temperatura ambiente, o ferro encontra-se no estado sólido. É extraído da natureza sob a forma de minério de ferro que, depois de passado para o estágio de ferro-gusa, através de processos de transformação, é usado na forma de lingotes. Controlando-se o teor de carbono (o carbono ocorre de forma natural no minério de ferro) dá-se origem a várias formas de aço.
Este metal de transição é encontrado no grupo 8 (VIIIB) da Classificação Periódica dos Elementos. É o quarto elemento mais abundante da crosta terrestre (aproximadamente 5%) e, entre os metais, somente o alumínio é mais abundante.
É um dos elementos mais abundantes do Universo; o núcleo da Terra é formado principalmente por ferro e níquel (NiFe). Este ferro está em uma temperatura muito acima da temperatura de Curie do ferro, dessa forma, o núcleo da Terra não é ferromagnético.
O ferro tem sido historicamente importante, e um período da história recebeu o nome de Idade do ferro. O ferro, atualmente, é utilizado extensivamente para a produção de aço, liga metálica para a produção de ferramentas, máquinas, veículos de transporte (automóveis, navios, etc), como elemento estrutural de pontes, edifícios, e uma infinidade de outras aplicações
Pix.gifFerroStylised Lithium Atom.svg
Manganês ← Ferro → Cobalto
Cubic-body-centered.png

26
Fe
Fe
Ru
Tabela completa • Tabela estendida
Aparência
metálico brilhante com tons acinzentados


Pedaços de cristal de ferro puro (>99,97%), refinadoseletrolitamente, e um cubo de ferro de alta pureza (99,9999%) de 1 cm3 para comparação.

Linhas espectrais do ferro.
Informações gerais
NomesímbolonúmeroFerro, Fe, 26
Série químicaMetal de transição
Grupoperíodobloco8 (VIIIB), 4, d
Densidadedureza7874 kg/m3, 4
Número CAS7439-89-6
Propriedade atómicas
Massa atômica55,845(2) u
Raio atómico (calculado)140(156) pm
Raio covalente125 pm
Configuração electrónica[Ar] 3d6 4s2
Elétrons (por nível de energia)2, 8, 14, 2 (ver imagem)
Estado(s) de oxidação2, 3, 4, 6 ( anfótero)
Estrutura cristalinacúbico de corpo centrado
Propriedades físicas
Estado da matériasólido
Ponto de fusão1811 K
Ponto de ebulição3134 K
Entalpia de fusão13,8 kJ/mol
Entalpia de vaporização349,6 kJ/mol
Volume molar7,09×10−6 m3/mol
Pressão de vapor7,05 Pa a 1808 K
Velocidade do som4910 m/s a 20 °C
Classe magnéticaFerromagnético
Temperatura de Curie1043 K
Diversos
Eletronegatividade (Pauling)1,83
Calor específico440 J/(kg·K)
Condutividade elétrica9,93 106 S/m
Condutividade térmica80,2 W/(m·K)
1º Potencial de ionização762,5 kJ/mol
2º Potencial de ionização1561,9 kJ/mol
3º Potencial de ionização2957 kJ/mol
4º Potencial de ionização5290 kJ/mol
Isótopos mais estáveis
isoANMeia-vidaMDEdPD
MeV
54Fe5,8%estável com 28 neutrões
55Fesintético2,73 aε0,23155Mn
56Fe91,72%estável com 30 neutrões
57Fe2,2%estável com 31 neutrões
58Fe0,28%estável com 32 neutrões
Unidades do SI & CNTP, salvo indicação contrária.
Características

É um metal maleável, tenaz, de coloração cinza prateado apresentando propriedades magnéticas; é ferromagnético a temperatura ambiente, assim como o Níquel e o Cobalto.
É encontrado na natureza fazendo parte da composição de diversos minerais, entre eles muitos óxidos, como o FeO (óxido de ferro II, ou óxido ferroso) ou como Fe2O3 (óxido de ferro III, ou óxido férrico). Os números que acompanham o íon ferro diz respeito aos estados de oxidação apresentados pelo ferro, que são +2 e +3, e é raramente encontrado livre. Para obter-se ferro no estado elementar, os óxidos são reduzidos com carbono, e imediatamente são submetidos a um processo de refinação para retirar as impurezas presentes.
É o elemento mais pesado que se produz exotermicamente por fusão, e o mais leve produzido por fissão, devido ao fato de seu núcleo ter a mais alta energia de ligação por núcleon, que é a energia necessária para separar do núcleo um nêutron ou um próton. Portanto, o núcleo mais estável é o do ferro-56.
Apresenta diferentes formas estruturais dependendo da temperatura:
Ferro α: É o que se encontra na temperatura ambiente, até os 788 °C. O sistema cristalino é uma rede cúbica centrada no corpo e é ferromagnético.
Ferro β: 788 - 910 °C. Tem o mesmo sistema cristalino que o α, porém a temperatura de Curie é de 770 °C, e passa a ser paramagnético.
Ferro γ: 910 - 1400 °C; apresenta uma rede cúbica centrada nas faces.
Ferro δ: 1400 - 1539 °C; volta a apresentar uma rede cúbica centrada no corpo.

Aplicações


O ferro é o metal mais usado, com 95% em peso da produção mundial de metal. É indispensável devido ao seu baixo preço e dureza, especialmente empregado em automóveis, barcos e componentes estruturais de edifícios.
O aço é a liga metálica de ferro mais conhecida, sendo este o seu uso mais frequente. Os aços são ligas metálicas de ferro com outros elementos, tanto metálicos quanto não metálicos, que conferem propriedades distintas ao material. É considerada aço uma liga metálica de ferro que contém menos de 2% de carbono; se a percentagem é maior recebe a denominação de ferro fundido.
As ligas férreas apresentam uma grande variedade de propriedades mecânicas dependendo da sua composição e do tratamento que se tem aplicado.
Os aços são ligas metálicas de ferro e carbono com concentrações máximas de 2,2% em peso de carbono, aproximadamente. O carbono é o elemento de ligação principal, porém os aços contêm outros elementos. Dependendo do seu conteúdo em carbono são classificados em:
Aço baixo em carbono. Contém menos de 0.25% de carbono em peso. Não são tão duros nem tratáveis termicamente, porém dúcteis. São utilizados em veículos, tubulações, elementos estruturais e outros. Também existem os aços de alta resistência com baixa liga de carbono, entretanto, contêm outros elementos fazendo parte da composição, até uns 10% em peso; apresentam uma maior resistência mecânica e podem ser trabalhados facilmente.
Aço médio em carbono. Entre 0,25% e 0,6% de carbono em peso. Para melhorar suas propriedades são tratados termicamente. São mais resistentes que os aços baixo em carbono, porém menos dúcteis, sendo empregados em peças de engenharia que requerem uma alta resistência mecânica e ao desgaste.
Aço alto em carbono. Entre 0,60% e 1,4% de carbono em peso. São os mais resistentes, entretanto, os menos dúcteis. Adicionam-se outros elementos para que formem carbetos, por exemplo, formando o carbeto de tungstênio, WC, quando é adicionado à liga o wolfrâmio. Estes carbetos são mais duros, formando aços utilizados principalmente para a fabricação de ferramentas.
Um dos inconvenientes do ferro é que se oxida com facilidade. Existem uma série de aços aos quais se adicionam outros elementos ligantes, principalmente o crômio, para que se tornem mais resistentes à corrosão. São os chamados aços inoxidáveis.
Quando o conteúdo de carbono da liga é superior a 2,1% em peso, a liga metálica é denominada ferro fundido. Estas ligas apresentam, em geral, entre 3% e 4,5% de carbono em peso. Existem diversos tipos de ferros fundidos: cinzento, esferoidal, branco e maleável. Dependendo do tipo apresenta aplicações diferentes: em motores, válvulas, engrenagens e outras.
Por outro lado, os óxidos de ferro apresentam variadas aplicações: em pinturas, obtenção de ferro, e outras. A magnetita (Fe3O4) e o óxido de ferro III (Fe2O3) têm aplicações magnéticas.

História

Tem-se indícios do uso de ferro, seguramente procedente de meteoritos, quatro milênios a.C., pelos sumérios e egípcios.
Cada vez mais objetos de ferro, datados entre o segundo e terceiro milênio antes de Cristo, foram encontrados (estes se distinguem do ferro proveniente dos meteoritos pela ausência de níquel) na Mesopotâmia, Anatólia e Egito. Entretanto, seu uso provável destinou-se a fins cerimoniais, por ter sido um metal muito caro, mais do que o ouro na época. Algumas fontes sugerem que talvez o ferro era obtido como subproduto da obtenção do cobre.
Entre 1600 e 1200 a.C., observou-se um aumento de seu uso no Oriente Médio, porém não como substituto ao bronze.
Entre os séculos XII e X antes de Cristo, ocorreu uma rápida transição no Oriente Médio na substituição das armas de bronze para as de ferro. Esta rápida transição talvez tenha ocorrido devido a uma escassez de estanho, e devido a uma melhoria na tecnologia em trabalhar com o ferro. Este período, que ocorreu em diferentes ocasiões segundo o lugar, denominou-se Idade do ferro, substituindo a Idade do bronze. Na Grécia iniciou-se por volta do ano 1000 a.C., e não chegou à Europa ocidental antes do século VII a.C.. A substituição do bronze pelo ferro foi paulatina, pois era difícil produzir peças de ferro: localizar o mineral, extraí-lo, proceder a sua fundição a temperaturas altas e depois forjá-lo.
Na Europa central, surgiu no século IX a.C. a "cultura de Hallstatt" substituindo a "cultura dos campos de urnas", que se denominou "Primeira Idade do Ferro", pois coincide com a introdução do uso deste metal. Aproximando-se do ano 450 a.C., ocorreu o desenvolvimento da "cultura da Tène", também denominada "Segunda Idade do Ferro". O ferro era usado em ferramentas, armas e joias, embora segue-se encontrando objetos de bronze.
Junto com esta transição de bronze ao ferro descobriu-se o processo de "carburação", que consiste em adicionar carbono ao ferro. O ferro era obtido misturado com a escória contendo carbono ou carbetos, e era forjado retirando-se a escória e oxidando o carbono, criando-se assim o produto já com uma forma. Este ferro continha uma quantidade de carbono muito baixa, não sendo possível endurecê-lo com facilidade ao esfriá-lo em água. Observou-se que se podia obter um produto muito mais resistente aquecendo a peça de ferro forjado num leito de carvão vegetal, para então submergi-lo na água ou óleo. O produto resultante, apresentando uma camada superficial de aço, era menos duro e mais frágil que o bronze.
Na China, o primeiro ferro utilizado também era proveniente dos meteoritos. Foram encontrados objetos de ferro forjado no noroeste, perto de Xinjiang, do século VIII a.C.. O procedimento utilizado não era o mesmo que o usado no Oriente Médio e na Europa.
Nos últimos anos da Dinastia Zhou (550 a.C.), na China,[1] se conseguiu obter um produto resultante da fusão do ferro (ferro fundido). O mineral encontrado ali apresentava um alto conteúdo de fósforo, com o qual era fundido em temperaturas menores que as aplicadas na Europa e outros lugares. Todavia, durante muito tempo, até a Dinastia Qing (aos 221 a.C.), o processo teve uma grande repercussão.
O ferro fundido levou mais tempo para ser obtido na Europa, pois não se conseguia a temperatura necessária. Algumas das primeiras amostras foram encontradas na Suécia, em Lapphyttan e Vinarhyttan, de 1150 a 1350 d.C.
Na Idade Média, e até finais do século XIX, muitos países europeus empregavam como método siderúrgico a "farga catalana". Obtinha-se ferro e aço de baixo carbono empregando-se carvão vegetal e o minério de ferro. Este sistema já estava implantado no século XV, conseguindo-se obter temperaturas de até 1200 °C. Este procedimento foi substituído pelo emprego de altos fornos.
No princípio se usava carvão vegetal para a obtenção de ferro como fonte de calor e como agente redutor. No século XVIII, na Inglaterra, o carvão vegetal começou a escassear e tornar-se caro, iniciando-se a utilização do coque, um combustível fóssil, como alternativa. Foi utilizado pela primeira vez por Abraham Darby, no início do século XVIII, construindo em Coalbrookdale um "alto forno". Mesmo assim, o coque só foi empregado como fonte de energia na Revolução industrial. Neste período a procura foi se tornando cada vez maior devido a sua utilização, como por exemplo, em estradas de ferro.
O alto forno foi evoluindo ao longo dos anos. Henry Cort, em 1784, aplicou novas técnicas que melhoraram a produção. Em 1826 o alemão Friedrich Harkot construiu um alto forno sin mampostería para humos.
Em finais do século XVIII e início do século XIX começou-se a empregar amplamente o ferro como elemento estrutural em pontes, edifícios e outros. Entre 1776 e 1779 se construiu a primeira ponte de ferro fundido por John Wilkinson e Abraham Darby. Na Inglaterra foi empregado pela primeira vez o ferro na construção de edifícios por Mathew Boulton e James Watt, no princípio do século XIX. Também são conhecidas outras obras deste século, como por exemplo, o "Palácio de Cristal" construído para a Exposição Universal de 1851 em Londres, do arquiteto Joseph Paxton, que tem uma armação de ferro, ou a Torre Eiffel, em Paris, construída em 1889 para a Exposição Universal, onde foram utilizadas milhares de toneladas de ferro.
Abundância e obtenção

É o metal de transição mais abundante da crosta terrestre, e quarto de todos os elementos. Também é abundante no Universo, havendo-se encontrados meteoritos que contêm este elemento. O ferro é encontrado em numerosos minerais, destacando-se:
A hematita (Fe2O3), a magnetita (Fe3O4), a limonita (FeO(OH)), a siderita (FeCO3), a pirita (FeS2) e a ilmenita (FeTiO3).
Pode-se obter o ferro a partir dos óxidos com maior ou menor teor de impurezas. Muitos dos minerais de ferro são óxidos.
A redução dos óxidos para a obtenção do ferro é efetuada em fornos denominados alto forno ou forno alto. Nele são adicionados os minerais de ferro, em presença de coque, e carbonato de cálcio, CaCO3 , que atua como escorificante.
No processo de obtenção, geralmente é usado a hematita, que apresenta ponto de fusão de 1560 °C. Para que essa temperatura seja diminuída, é adicionado o carbonato de cálcio (CaCO3). Além de promover a redução do ponto de fusão da hematita, ele atua reagindo com impurezas presentes como o dióxido de silício (SiO2) formando o metassilicato de cálcio (CaSiO3), conhecido como escória. O coque (carbono amorfo, com mais de 90% de pureza) é usado para promover a redução da hematita, transformando o Fe3+ em Fe(s). Inicialmente, o coque, em presença de excesso de O2 fornecido pelo ar, reage produzindo CO2. O dióxido de carbono assim produzido, e também proveniente do carbonato de cálcio, reagem com o coque que é constantemente adicionado ao alto forno, produzindo CO. Este, por fim será o responsável por reagir com Fe2O3 produzindo Fe(s) e CO2
O processo de oxidação do coque com oxigênio libera energia. Na parte inferior do alto forno a temperatura pode alcançar 1900 °C.
Redução dos minerais que são óxidos:
Inicialmente, os óxidos de ferro são reduzidos na parte superior do alto forno, parcial ou totalmente, com o monóxido de carbono, já produzindo ferro metálico. Exemplo: redução da magnetita:
Fe3O4 + 3CO → 3FeO + 3CO2
FeO + CO → Fe + CO2
Posteriormente, na parte inferior do alto forno, onde a temperatura é mais elevada, ocorre a maior parte da redução dos óxidos com o coque (carbono):
Fe3O4 + C → 3FeO + CO
O carbonato de cálcio se decompõe:
CaCO3 → CaO + CO2
e o dióxido de carbono é reduzido com o coque a monóxido de carbono, como visto acima.
Na parte mais inferior do alto forno ocorre a carburação:
3Fe + 2CO → Fe3C + CO2
Processos de enriquecimento:
Finalmente ocorre a combustão e a dessulfuração (eliminação do enxofre) devido à injeção de ar no alto forno, e por último são separadas as frações: a escória do ferro fundido, que é a matéria-prima empregada na indústria.
O ferro obtido pode conter muitas impurezas não desejáveis, sendo necessário submetê-lo a um processo de refinação que pode ser realizado em fornos chamados convertedores.
Em 2004, os cinco maiores países produtores de ferro eram a China, o Brasil, a Austrália, a Africa e a Rússia, com 74% da produção mundial.

Compostos


Os estados de oxidação mais comuns são +2 e +3. Os óxidos de ferro mais conhecidos são o óxido de ferro II (FeO), o óxido de ferro III (Fe2O3) e o óxido misto (Fe3O4). Forma numerosos sais e complexos com estes mesmos estados de oxidação. O hexacianoferrato II de ferro III, usado em pinturas, é conhecido como azul da Prússia ou azul de Turnbull.
São conhecidos compostos de ferro com estados de oxidação +4, +5 e +6, porém são pouco comuns. No ferrato de potássio (K2FeO4), usado como oxidante, o ferro apresenta estado de oxidação +6. O estado de oxidação +4 é encontrados em poucos compostos e também em alguns processos enzimáticos.
O Fe3C é conhecido como cementita, contém 6,67 % em carbono. O ferro α é conhecido como ferrita, e a mistura de ferrita e cementita é denominada perlita ou ledeburita, dependendo do teor de carbono. A austenita é o ferro γ.

Origem: Google