Páginas

sexta-feira, 21 de junho de 2013

Mineral GRUPO DOS SILICATOS - SUBGRUPO DOS INOSSILICATOS (PIROXÊNIOS)

Constitui um dos grupos mais importantes do silicatos e a sua estrutura resulta da polimerização dos tetraedros de SiO4, de maneira a formar fios, cadeias unidimensional infinitas. Esses fios podem ser simples, gerando o grupo dos piroxênios ou duplos, onde duas cadeias unidimensionais infinitas estão unidas através do compartilhamento dos tetraedros dos dois fios, resultando no grupo dos anfibólios.

PIROXÊNIOS

Grupo bastante importante, que ocorre em quase todos os tipos de rochas ígneas e nas metamórficas de temperatura média a alta. A polimerização em fios resulta no radical [Si2O6]4-, sendo que os fios estão unidos através de cátions dispostos intersticialmente resultando na fórmula geral BnCo/Si2O6. A posição B é ocupada por cátions grandes (cerca de 1 A de raio) , em coordenação 8 (cúbica) com o oxigênio, representados principalmente por Ca e Na; a posição C, por cátions com dimensões de raios iônicos ao redor de 0,7 A (Mg, Fe, Fe3+, Mn, Al, Mn3+, Li, Ti), resultando em coordenação 6 (octaédrica) com o oxigênio; sendo que "n" e "o" correspondem ao número de elementos na formula química. A introdução de um íon de carga maior ou menor pode ser compensada mediante uma substituição simultânea, como do silício pelo alumínio, nas posições tetraédricas.
Os inossilicatos de cadeia simples originam três subgrupos ou três variedades, uma cristalizada no sistema ortorrômbico, designada ortopiroxênio (série dos ortopiroxênios), outra no sistema monoclínico, denominada clinopiroxênio (série do diopsídio, augita e espodumênio), e a terceira no sistema triclínico, denominada piroxenóide. Nos ortopiroxênios os tetraedros em fios são unidos apenas por cátions de dimensões em coordenação 6 com o oxigênio, resultando em uma simetria ortorrômbica, produzida por uma reflexão semelhante a um geminado, sobre (100), levando a uma duplicação na dimensão a0 da cela; enquanto que nos clinopiroxênios as posições B e C estão ocupadas, gerando maior dificuldade de empacotamento, especialmente pela presença dos cátions maiores, resultando em simetria menor. O terceiro caso ocorre quando ambas as posições são ocupadas por íons grandes, levando a simetria triclínica.
Os ortopiroxênios sob certas condições de pressão e temperatura, podem formar polimorfos monoclínicos (clinoestatita-clino-hipertênio-clinoferrossílica), com a metade da dimensão a0 da cela e o Fe e o Mg podem substituir-se, mutualmente, em todas as proporções com distribuição fortuita.
Quando a posição B é ocupada pelo Ca e C pelos íons bivalentes (Mg, Fe, Mn), resulta na série do diopsídio. Dentro desta série, pode haver substituição mútua, completa, do Mg, Fe e Mn, resultando em alterações pouco expressivas, porém quase lineares, nas dimensões da cela e nas propriedades.
No caso da ocupação da posição B por íon metálico, alcalino, monovalente, de tamanho moderado a grande, e das posições C por um cátion trivalente, resulta em um membro da série do espodumênio: espodumênio, jadeita ou egerina. É possível a solução sólida não somente dentro desta série mas também entre esta série e a do diopsídio, dando origem a muitas variedades.
Normalmente os piroxênios das rochas metamórficas e, principalmente das rochas magmáticas, contêm tanto Ca como Na nas posições B, Mg, Fe2+, Al, Fe3+ e algum Ti4+ na posição C, assim como o Si substituído por algum Al nas posições tetraédricas, resultando na série da augita ou dialágio.
A junção dos fios resulta em formas (hábitos) prismáticas segundo o eixo cristalográfico c, com clivagem prismática perfeita {110}, formando ângulos de aproximadamente 870 e 930, partições {100},. {001} e {010}, e geminações segundo {100}, que nas variedades monoclínicas aumenta a simetria.
A coloração dos piroxênios está, principalmente, na dependência do ferro: quanto maior a quantidade desse elemento mais acentuada será a cor verde, chegando ao preto. O manganês, o titânio e o cromo também influenciam na variação da cor dos piroxênios.
De um modo geral os piroxênios são gerados em temperaturas superiores à dos anfibólios, tendem a apresentar cores mais claras para o mesmo teor de ferro, e os prismas dos piroxênios normalmente são mais curtos do que os dos anfibólios correspondentes.
A ligação dos tetraedros, como colocado acima, forma uma cadeia continua de composição (SiO3)n, onde a distância de repetição é de aproximadamente 5,3A, definindo o parâmetro a0 da malha unitária. As cadeias que são ligadas lateralmente pelos ions (Ca,Na,Mg,Fe,Al, etc.) podem ter várias disposições, umas relativamente às outras, e são os diferentes arranjos das cadeias que propiciam a subdivisão dos piroxênios em clino e orto. Os parâmetros da malha unitária do clinopiroxênio diopsídio (a0 9,73, b0 8,91, c0 5,25 e ß 105,50’) e os do ortopiroxênio enstatita (a0 18,23, b0 8,81, c0 5,195) são típicas dos dois subgrupos. Os parâmetros b0 e c0 são semelhantes, enquanto que o a0 no ortopiroxênio é praticamente o dobro do diopsídio, pois ocorre a repetição da cela unitária de modo a gerar simetria ortorrômbica.
De um modo geral os clinopiroxênios podem ser subdivididos em dois grupos estruturais. Um grupo envolvendo diopsídio, hedenberguita e augitas, com teor de CaSiO3 maior que 25%, possui simetria monoclínica e todos os componentes do grupo são estruturalmente semelhantes ao diopsídio. As composições dos membros do outro grupo possuem um teor máximo de CaSiO3 de 15% e os membros, com mais de 30% da molécula FeSiO3, de alta temperatura são monoclínicos (pigeonita) e os de baixa temperatura (metamórficos e magmáticos plutônicos) são ortorrômbicos. Já os membros com menos de 30% da molécula FeSiO3, podem ocorrer sob três formas polimórficas (da enstatita e protoenstatia, ambas ortorrômbicas e da clinoenstatita, que é monoclínica, todavia, apenas os polimorfos ortorrômbicos aparecem formando rochas).
Nos piroxênios os cátions que ocorrem lateralmente unindo as cadeias de tetraedros podem ser agrupados em duas posições denominadas respectivamente de M1 e M2. No diopsídio os íons de Mg que ocupam a posição M1, estão coordenados octaedricamente pelos oxigênios, os quais estão por sua vez ligados apenas a um Si. Os ions Ca, de maior raio atômico, ocupam a posição M2, e estão rodeados por 8 oxigênios, dois dos quais são compartilhados pelos tetraedros das cadeias vizinhas. Os átomos de Mg localizam-se principalmente entre os ápices das cadeias de SiO3, enquanto os átomos de Ca estão localizados principalmente entre as suas bases. Não há nenhum deslocamento das cadeias vizinhas na direção b, mas as cadeias vizinhas estão em zigue-zague na direção c, de tal maneira que resulta malha monoclínica.
Existe uma relação estreita entre os parâmetros da malha unitária com a composição dos piroxênios pertencentes ao campo do diopsídio-hedenberguita-clioestatita-ferrossilita. A variação do parâmetro c0 é pequena, mas o parâmetro b0 é muito sensível à variações da relação Mg:Fe. Os parâmetros a0 e ß variam fortemente com as relações Ca:Mg e Ca:Fe, sendo dessa forma muito úteis na caracterização desses minerais.
A estrutura da clinoenstatita é semelhante à do diopsídio, mas podem aparecer diferenças porque as posições M1 e M2, ocupadas por Mg e Ca no diopsídio, estão preenchidas pelo Mg na clinoenstatita. Ambos os cátions têm uma coordenação seis o que causa uma certa distorção das cadeias de SiO3, resultando na falta de equivalência das cadeias vizinhas.
Na enstatita e nos outros minerais do grupo as cadeias estão unidas lateralmente por Mg ou (Mg,Fe), que estão em posições comparáveis às do Mg e Ca no diopsídio e, uma vez que tanto o Mg como o Fe são íons menores que o Ca, o empilhamento das cadeias difere da do diopsídio, e é tal que origina uma malha ortorrômbica, com parâmetro a0 aproximadamente duplo em relação ao diopsídio.
No polimorfo de alta temperatura, a protoenstatita, as cadeias são cristalograficamente equivalentes como no diopsídio; contudo, as cadeias estão estendidas e o parâmetro c0 da protoenstatita é maior que o de qualquer outro componente do grupo dos piroxênios.
A estrutura da pigeonita é semelhante à do diopsídio; contudo, na pigeonita não há íons de Ca em quantidade insuficiente para preencher todas as posições M2, e as que restam são ocupadas por Fe em vez de Mg (por exemplo, uma pigeonita com composição Ca0,24Mg0,52Fe1,24Si2O6 tem Ca0,24Fe0,76 em M2 e Mg0,52Fe0,48 em M1). A posição M1 permanece com coordenação seis, mas a coordenação de M2 é reduzida de oito para sete, pela substituição dos ions de Fe por Ca. A modificação na coordenação da posição M2 é acompanhada por uma certa distorção na configuração da cadeia, que dá como resultado a não equivalência das cadeias vizinhas. Além disso, os cations em M1 e M2 não estão sobre os eixos binários, como suscede no diopsídio.
GRUPO DOS ORTOPIROXÊNIOS
O ortopiroxênio forma uma série isomórfica constituída pelos seguintes membros: (Mg,Fe)2Si2O6 - enstatita (clinoestatita)(até 12% de Fe); bronzita (12 a 30% de Fe); hiperstênio (de 30 a 50% de Fe); ferro-hiperstênio (de 50 a 70% de Fe); eulita (de 70 a 88% de Fe) e; ferrossilita (clinoferrossilita) (mais de 88% de Fe). A ferrossilita/clinoferrossilita é muito raramente encontrada na natureza. Os ortopiroxênios podem conter pequenas quantidades de Ca, Al, Ti, Ni, Cr, Fe3+ e Mn, sendo que a presença do Ca leva a exsolução, especialmente nos cristais de origem magmática. O termo enstatita provém do grego enstates (oponente), por seu caráter refratário; bronzita de bronze, por ter brilho semelhante ao dessa liga; hiperstênio, do grego hyper (muito) + sthenos (força) por ser mais duro que a hornblenda; eulita de eulisito, rocha onde foi descrito, e ferrossilita, de ferro + silicato.
GRUPO DOS CLINOPIROXÊNIOS
Os clinopiroxênios são todos monoclínicos e formam várias séries isomórficas onde as mais significativas são: diopsídio - salita - ferrossalita - hedenbergita - CaMgSi2O6 - CaFeSi2O6; endiopsídio-augita-ferroaugita-ferro-hedenbergita-augita subcálcica-ferroaugita subcálcica - (Ca,Na)Mg(Si,Al)SiO6 - (Ca,Na)(Fe++,Fe3+,Al,Ti,Mn,Cr)(Si,Al)SiO6; diopsídio - johannsenita Ca(Mg,Fe)Si2O6 - Ca(Mn,Fe,Mg)Si2O6; egerina(acmita)-NaFe3+Si2O6 - jadeíta - NaAlSi2O6; pigeonita (Mg-pigeonita - Fe-pigeonita (Mg,Fe,Ca,Na)(Mg,Fe,Fe,Al,Ti,Mn,Cr)(Si,Al)SiO6; augita - egirina-augita - egerina (Ca,Na)(Mg,Fe++, Fe3+,Al)(Si,Al)SiO6 (Na,Ca)(Fe++,Mg,Fe3+)Si2O6.


ORTOPIROXÊNIOS

Enstatita 

Foto do Mineral Forma Cristalográfica
 
Cristais tabulares de enstatita
Direções ópticas e cristalográficas
Fórmula Química - (Mg,Fe)2Si2O6
Composição -
  40,15 % MgO, 59,85 % SiO2

Cristalografia -
Ortorrômbico
        Classe -
Bipiramidal

Propriedades Ópticas -
Biaxial positivo

Hábito -
Prismática, maciça, fibrosa ou lamelar
Clivagem - 
Boa em {110}
Dureza -
5,5

Densidade relativa -
3,2 - 3,5
Brilho -
Vítreo a nacarado
Cor -
Acinzentado, amarelado ou branco-esverdeado ao verde da oliva, e pardo.

Associação -
Pode estar associada a minerais comuns em  rochas como dunitos, piroxenitos, peridotitos, noritos, basaltos, gabros, charnockitos, enderbitos e  granulitos.
Propriedades Diagnósticas -
Extinção paralela, clivagem perfeita formando ângulo aproximadamente reto, forma prismática, e associação com minerais relativamente anidros e ou de alta temperatura. Dentro do grupo difere  principalmente pelo índice de refração (relevo) e da birrefringência, que aumenta proporcionalmente ao teor de Fe, pelo caráter ótico e ângulo 2V. 
Ocorrência -
Ocorre em rochas básicas e ultrabásicas (dunitos, piroxenitos, peridotitos, noritos, basaltos, gabros) em rochas magmáticas ácidas a intermediárias anidras (charnockitos e enderbitos) e em rochas metamórficas de altas temperaturas, de metamorfismo regional (granulitos) ou de contato (ortopiroxênio hornfels). É um dos primeiros minerais a se cristalizar na rochas magmáticas, especialmente nos magmas mais anidros, e um dos últimos a se cristalizar nas rochas metamórficas, onde apenas aparece em temperatura superiores a 700ºC. Substitui a olivina, é substituída por anfibólio, biotita, clorita, serpentina, talco e bastita.
Usos - Algumas variedades de boa coloração podem ser usadas como gema e as variedades magnesianas podem ser utilizadas na indústria de refratários.


Hiperstênio 
Foto do Mineral Forma Cristalográfica
 
Cristal de hiperstênio
Direções ópticas e cristalográficas
Fórmula Química - (Mg,Fe)2Si2O6
Composição -
  17,35 % MgO, 30,93 % FeO, 51,73 % SiO2

Cristalografia -
Ortorrômbico
        Classe -
Bipiramidal

Propriedades Ópticas -
Biaxial negativo

Hábito -
Prismática, maciça, fibrosa ou lamelar
Clivagem - 
Boa em {110}
Dureza -
5,5

Densidade relativa -
3,2 - 3,9
Brilho -
Vítreo a nacarado
Cor -
Acinzentado, amarelado ou branco-esverdeado ao verde da oliva, e pardo.

Associação -
Pode estar associado a minerais comuns em  rochas como dunitos, piroxenitos, peridotitos, noritos, basaltos, gabros, charnockitos, enderbitos e  granulitos.
Propriedades Diagnósticas -
Extinção paralela, clivagem perfeita formando ângulo aproximadamente reto, forma prismática, e associação com minerais relativamente anidros e ou de alta temperatura. Dentro do grupo difere principalmente pelo índice de refração (relevo) e   birrefringência, que aumenta proporcionalmente ao teor de Fe, pelo caráter ótico e ângulo 2V. 
Ocorrência -
Ocorre em rochas básicas e ultrabásicas (dunitos, piroxenitos, peridotitos, noritos, basaltos, gabros) em rochas magmáticas ácidas a intermediárias anidras (charnockitos e enderbitos) e em rochas metamórficas de altas temperaturas, de metamorfismo regional (granulitos) ou de contato (ortopiroxênio hornfels). É um dos primeiros minerais a se cristalizar na rochas magmáticas, especialmente nos magmas mais anidros, e um dos últimos a se cristalizar nas rochas metamórficas, onde apenas aparece em temperatura superiores a 750ºC. Substitui olivina, é substituído por anfibólio, biotita, clorita, serpentina, talco e bastita.
Usos - Não apresenta.


PIROXÊNÓIDES

Pectolita

Fórmula Química - Ca2NaHSi3O9

Composição -
 Piroxênio de cálcio e sódio

Cristalografia - Triclínico
        Classe - Pedial

Propriedades Ópticas - Biaxial positivo

Hábito -
Acicular, maciço, radial.
Foto do Mineral
Cristais radiais de pectolita
Clivagem - Perfeita em {100}
Dureza -
4,5 - 5
Densidade relativa -
2,8 - 2,9
Brilho -
Lustroso a subvítreo
Cor -
Branco a cinza

Associação -
 Associada a prehnita, apofilita, natrolita e zeólitas.
Propriedades Diagnósticas -
Hábito, propriedades ópticas, testes químicos e associação mineral 
Ocorrência -
Formada por processos hidrotermais, alojando-se em cavidades de rochas ígneas. Presente em algumas rochas alcalinas, de origem primária, como nefelina sienito.
Usos -
Não apresenta.

Piroxmanguita 
Fórmula Química - (Mn,Fe)SiO3

Composição -
  Piroxenóide de Mn e ferro

Cristalografia -
Triclínico
        Classe -
Prismático

Propriedades Ópticas -
Biaxial positivo

Hábito -
Prismático
Foto do Mineral
Cristais de piroxmanguita (róseos)
Clivagem -  Perfeita em {110} e {1-10}
Dureza -
5,5 - 6
Densidade relativa -
3,61 - 3,80
Cor -
Vermelho ou  marrom

Associação -
 Normalmente associado a minerais manganesíferos.
Propriedades Diagnósticas -
Baixo ângulo 2V e cor. 
Ocorrência -
Mineral gerado por metamorfismo de contato e regional, em calcários e rochas cálcio-silicáticas (metamargas) ricas em manganês. Ocorre em escarnito associada a metamorfismo de contato e granulitos.
Usos - Sem importância econômica.


 Rodonita


Foto do Mineral Forma Cristalográfica
 
Cristais de rodonita
Direções ópticas e cristalográficas
Fórmula Química - (Mn,Ca,Fe)SiO3
Composição -
4,43 % CaO, 3,18 % MgO, 37,39 % Mn2O3, 11,35 % FeO, 47,44 % SiO2

Cristalografia -
Triclínico
        Classe -
Pinacoidal

Propriedades Ópticas -
Biaxial positivo

Hábito -
Tabular ou maciço
Clivagem - 
Duas direções, {110} e {1-10}
Dureza -
5,5 - 6,5

Densidade relativa -
3,4 - 3,7
Brilho -
Vítreo
Cor -
Vermelho, rosa ou castanha

Associação -
 Pode estar associada a outros minerais de manganês.

Propriedades Diagnósticas -
Cor e clivagem prismática.
Ocorrência -
Mineral gerado por metamorfismo de contato e regional.
Usos - Pedra ornamental e minério de Mn.


Wollastonita 


Fórmula Química - CaSiO3

Composição -
  48,28 % CaO, 51,72 % SiO2

Cristalografia -
Triclínico
        Classe -
Pinacoidal

Propriedades Ópticas -
Biaxial negativo

Hábito -
Tabular ou maciço
Foto do Mineral
Cristais de wollastonita
Clivagem -  Perfeita em {100} e boa {001} e {-10-2}, com fragmentos controlados por {100} e {001}
Dureza -
5,5
Densidade relativa -
2,8 - 2,9
Brilho -
Vítreo a nacarado
Cor -
Incolor, branco acinzentado

Associação -
 
Normalmente associado a minerais cálcicos. 
Propriedades Diagnósticas -
Clivagem e solubilidade em ácido. 
Ocorrência -
Mineral gerado por metamorfismo de contato e regional, especialmente de baixa pressão, e alta temperatura (fácies piroxênio hornfels e granulito) através da reação: CaCO3 + SiO2= CaSiO3 + CO2, em calcários e rochas cálcio-silicáticas (metamargas). Ocorre em escarnito associada a metamorfismo de contato e granulitos.
Usos -
Industria de fibro-cimento; lã de vidro (fibras de grande resistência) e na indústria cerâmica.



 CLINOPIROXÊNIOS

Egirina 


Foto do Mineral Forma Cristalográfica
 
Cristais tabulars de aegirina em rocha
Direções ópticas e cristalográficas
Fórmula Química - NaFeSi2O6
Composição -
13,42 % Na2O, 34,56 % Fe2O3, 52,02 % SiO2

Cristalografia - Monoclínico
        Classe -
Prismática

Propriedades Ópticas - Biaxial negativo

Hábito -
Lamelar, prismático, estriado
Clivagem - 
Distinta em {110}
Dureza -
6 - 6,5

Densidade relativa -
3,5 - 3,54
Partição -
Presente em {100}
Brilho -
Lustroso a vítreo
Cor -
Marrom a marrom-esverdeado

Associação -
Associada a leucita, nefelina, cancrinita.
Propriedades Diagnósticas -
Propriedades ópticas e testes químicos. 
Ocorrência -
Formada devido a cristalização de magmas alcalinos, encontrado em rochas como quartzo sienitos, nefelina sienitos e em alguns granitos.
Usos -
Não apresenta.

Augita 

Foto do Mineral Forma Cristalográfica
 
Cristal de augita em rocha
Direções ópticas e cristalográficas
Fórmula Química - (Ca, Mg, Al )2(Si,Al)2O6
Composição -
 1,31 % Na2O, 21,35 % CaO, 15,35 % MgO, 3,38 % TiO2, 8,63 % Al2O3, 6,08 % FeO, 48,30 % SiO2

Cristalografia - Monoclínico
        Classe -
Prismática

Propriedades Ópticas - Biaxial positivo

Hábito -
Prismático, tabular
Clivagem - 
Boa em {110}
Dureza -
5 - 6,5

Densidade relativa -
3,2 - 3,6
Partição -
Presente em {100} e {010}
Brilho -
Lustroso a vítreo
Cor -
Verde a marrom-escuro

Associação -
Associada a pigeonita, diopsídio, plagioclásios.
Propriedades Diagnósticas -
Associação mineral e propriedades ópticas. 
Ocorrência -
Ocorre em muitas rochas ígneas ferro-magnesianas como gabros, doleritos e basaltos.
Usos -
Não apresenta.

Diposídio 

Foto do Mineral Forma Cristalográfica
 
Cristais de diopsídio (verdes)
Direções ópticas e cristalográficas
Fórmula Química - CaMgSi2O6
Composição -
  25,90 % CaO, 18,61 % MgO, 55,49 % SiO2

Cristalografia - Monoclínico
        Classe -
Prísmática

Propriedades Ópticas - Biaxial positivo

Hábito -
Prismático, colunar, lamelar
Clivagem - 
Distinta em {110}
Partição - Em {001}, {100} e {010}
Dureza - 5,5 - 6,5
Densidade relativa -
3,2 - 3,5
Fratura -
Presente em {001}
Brilho -
Lustroso a vítreo
Cor -
Incolor, branco, amarelo, cinza, verde-pálido, verde-escuro a preto

Associação - Associada a forsterita, calcita.
Propriedades Diagnósticas -
Hábito dureza, partição, propriedades ópticas.  
Ocorrência -
Ocorre em rochas metamórficas, ricas em magnésio, em sedimentos metamorfizados ricos em cálcio. Presente também em rochas básicas como basaltos.
Usos - Pode ser usado como gema
.

Espodumênio 



Foto do Mineral Forma Cristalográfica
 
Cristais de espodumênio
Direções ópticas e cristalográficas
Fórmula Química - LiAlSi2O6
Composição -
  8,03 % Li2O, 27,40 % Al2O3, 64,58 % SiO2

Cristalografia -
Monoclínico
        Classe -
Prismático

Propriedades Ópticas -
Biaxial positivo

Hábito -
Tabular
Clivagem - 
Perfeita em {110}
Dureza -
6,5 - 7

Densidade relativa -
3,15 - 3,2
Brilho -
Vítreo
Cor -
Branco, cinza, róseo (kunzita), amarelo ou  verde (hidolenita)

Associação -
 Pode estar associado com outros minerais alcalinos.
Propriedades Diagnósticas -
Clivagem prismática vertical e partição segundo pinacóide frontal. Quando aquecida adquire a cor acinzentada devido à presença do Li. 
Ocorrência -
Ocorrem em pegmatitos, aplitos e granitos litíferos, sendo que nos pegmatitos chegam a ocorrer sob a forma de cristais gigantescos, de até 90 toneladas.
Usos - É matéria-prima importante na obtenção de sais de lítio empregados em cerâmica e fabricação de vidro e as variedades transparentes e de bela coloração constituem pedras preciosas de grande valor.


Hedenberguita 

 
Fórmula Química - CaFeSi2O6
Composição -
22,60 % CaO,   28,96 % FeO, 48,44 % SiO2

Cristalografia - Monoclínico
        Classe -
Prísmática

Propriedades Ópticas - Biaxial positivo

Hábito -
Lamelar, maciço
Foto do Mineral
Cristais de hedenbergita
Clivagem - Distinta em {110}
Dureza -
5,5 - 6,5
Densidade relativa -
3,5
Fratura -
Presente em {001}
Brilho -
Lustroso a vítreo
Cor -
Verde-pálido, verde-escuro, marrom-esverdeado a preto

Associação - Associada a grunerita, faialita.
Propriedades Diagnósticas -
Hábito dureza, partição, propriedades ópticas.  
Ocorrência -
Ocorre devido ao  metamorfismo regional ou termal em sedimentos ricos em ferro. Presente em quartzo sienitos e faialita granitos.
Usos -
Não apresenta.

Jadeita 

Foto do Mineral Forma Cristalográfica
 
Rocha rica em cristais de jadeita
Direções ópticas e cristalográficas
Fórmula Química - NaAlSi2O6  
Composição -
 15,22 % Na2O, 23,79 % Al2O3, 1,96 % Fe2O3, 59,03 % SiO2

Cristalografia - Monoclínico
        Classe -
Prismática

Propriedades Ópticas - Biaxial positivo

Hábito -
Maciço, granular, fibroso, compacto
Clivagem - 
Distinta em {110}
Dureza -
6
Densidade relativa -
3,2 - 3,4
Fratura -
Irregular
Brilho -
Lustroso, subvítreo a perláceo
Cor -
Incolor, branco, verde, azul-esverdeado

Associação -
 Associada a albita, quartzo, lawsonita.
Propriedades Diagnósticas -
Propriedades ópticas, testes químicos, associação mineral. 
Ocorrência -
Presente em rochas metamórficas de alta pressão como glaucofânio-xistos.
Usos - Gema e ornamentação
.

Johannsenita 


Fórmula Química - Ca(Mn,Fe)Si2O6
Composição -
22,69 % CaO,  28,70 % MnO, 48,62 % SiO2

Cristalografia - Monoclínico
        Classe -
Prísmática

Propriedades Ópticas - Biaxial negativo

Hábito -
Prismático, colunar, lamelar
Foto do Mineral
Cristais de johannsenita com quartzo
Clivagem - Distinta em {110}
Dureza -
6
Densidade relativa -
3,4 - 3,5
Fratura -
Presente em {001}
Brilho -
Lustroso a vítreo
Cor -
Marrom-cravo, cinza, verde

Associação - Associada a forsterita, calcita e em protominérios de manganês.
Propriedades Diagnósticas -
Hábito dureza, partição, propriedades ópticas.  
Ocorrência -
Ocorre em rochas metamórficas, ricas em manganês, em sedimentos metamorfizados ricos em cálcio e manganês.
Usos -
Não apresenta.

Pigeonita 

Foto do Mineral Forma Cristalográfica
 
Fotomicrografia de pigeonita (Cinza) em augita
Direções ópticas e cristalográficas
Fórmula Química - (Mg, Fe, Ca)(Mg,Fe)Si2O6
Composição -  2,55 % CaO, 24,77 % MgO, 17,99 % FeO, 54,70 % SiO2

Cristalografia - Monoclínico
        Classe -
Prismático

Propriedades Ópticas -
Biaxial positivo de 2V pequeno

Hábito -
Tabular
Clivagem - 
Boa em {110}
Dureza -
6

Densidade relativa -
3,3 - 3,46
Cor -
Branco, cinza ou verde claro.

Associação -
 Pode estar associado a minerais de rochas básicas.

Propriedades Diagnósticas -
Cor e propriedades ópticas.
Ocorrência -
Gerada por cristalização magmática. Ocorre em rochas básicas como basaltos e diabásios.
Usos - Sem importância econômica.

 

 

 


 

 

 

 

 

 





Sem comentários:

Enviar um comentário