Geometria Plana: Áreas de
regiões poligonais
|
|
|
|
Triângulo e região triangular
No desenho abaixo, o triângulo ABC é a reunião dos segmentos de reta AB, BC e AC. A reunião de todos os pontos localizados no triângulo e também dentro do triângulo é chamada uma região triangular. A região triangular ABC é limitada pelo triângulo ABC. Os pontos dos lados do triângulo ABC bem como os pontos do interior do triângulo ABC são pontos da região triangular.
Triângulo ABC | Região triangular ABC |
---|---|
Duas ou mais regiões triangulares não são sobrepostas, se a interseção é vazia, é um ponto ou é um segmento de reta. Cada uma das regiões planas abaixo é a reunião de três regiões triangulares não sobrepostas.
O Conceito de Região Poligonal
- A cada região poligonal corresponde um único número real positivo chamado área.
- Se dois triângulos são congruentes então as regiões limitadas por eles possuem a mesma área.
- Se uma região poligonal é a reunião de n regiões poligonais não-sobrepostas então sua área é a soma das áreas das n-regiões.
- Os desenhos de regiões poligonais serão sombreadas apenas quando houver possibilidade de confusão entre o polígono e a região.
- Usaremos expressões como a área do triângulo ABC e a área do retângulo RSTU no lugar de expressões como a área da região triangular ABC e a área da região limitada pelo retângulo RSTU.
Área(ABCDEFX)=área(XAB)+área(XBC)+...+área(XEF)
Unidade de área
Para a unidade de medida de área, traçamos um quadrado cujo lado tem uma unidade de comprimento.Area do Rectangulo
O lado do retângulo pode ser visto como a base e o lado adjacente como a altura, assim, a área A do retângulo é o produto da medida da base b pela medida da altura h.
A = b × h
Area do quadrado
Esta é a razão pela qual a segunda potência do número x, indicada por x², tem o nome de quadrado de x e a área A do quadrado é obtida pelo quadrado da medida do lado x.
A = x²
Exemplo: Obter a área do retângulo cujo comprimento da base é 8 unidades e o comprimento da altura é 5 unidades.A = b×h A = (8u)x(5u) = 40u²No cálculo de áreas em situações reais, usamos medidas de comprimento em função de alguma certa unidade como: metro, centímetro, quilômetro, etc...
- Transformando as medidas em metros
Como h=2m e b=120cm=1,20m, a área será obtida através de:
A = b×h A = (1,20m)×(2m) = 2,40m²
- Transformando as medidas em centímetros
Como h=2m=200cm e b=120cm, a área do retângulo será dada por:
A = b×h A = (120cm)×(200cm) = 24000cm² Area do Paralelogramo
Qualquer lado do paralelogramo pode ser tomado como sua base e a altura correspondente é o segmento perpendicular à reta que contém a base até o ponto onde esta reta intercepta o lado oposto do paralelogramo.
No paralelogramo ABCD abaixo à esquerda, os segmentos verticais tracejados são congruentes e qualquer um deles pode representar a altura do paralelogramo em relação à base AB.
A área A do paralelogramo é obtida pelo produto da medida da base b pela medida da altura h, isto é, A=b×h.
Area do Triangulo
A área de um triângulo é a metade do produto da medida da base pela medida da altura, isto é, A=b.h/2. Demonstração da fórmula
Exemplo: Mostraremos que a área do triângulo equilátero cujo lado mede s é dada por A=s²R[3]/2, onde R[z] denota a raiz quadrada de z>0. Realmente, com o Teorema de Pitágoras, escrevemos h²=s²-(s/2)² para obter h²=(3/4)s² garantindo que h=R[3]s/2.
A = s × R[3] s/2 = ½ R[3] s²
Observação: Triângulos com bases congruentes e alturas congruentes possuem a mesma área.
Comparação de áreas entre triangulos semelhantes
Conhecendo-se a razão entre medidas correspondentes quaisquer de dois triângulos semelhantes, é possível obter a razão entre as áreas desses triângulos.
Propriedade: A razão entre as áreas de dois triângulos semelhantes é igual ao quadrado da razão entre os comprimentos de quaisquer dois lados correspondentes.
|
Área do Losango
O losango é um paralelogramo e a sua área é também igual ao produto do comprimento da medida da base pela medida da altura.
Area do Trapezio
Em um trapézio existe uma base menor de medida b1, uma base maior de medida b2 e uma altura com medida h.
Poligonos Regulares
Um polígono regular é aquele que possui todos os lados congruentes e todos os ângulos congruentes. Existem duas circunferências associadas a um polígono regular.
Circunferência circunscrita: Em um polígono regular com n lados, podemos construir uma circunferência circunscrita (por fora), que é uma circunferência que passa em todos os vértices do polígono e que contém o polígono em seu interior.
Elementos de um poligono regular
- Centro do polígono é o centro comum às circunferências inscrita e circunscrita.
- Raio da circunferência circunscrita é a distância do centro do polígono até um dos vértices.
- Raio da circunferência inscrita é o apótema do polígono, isto é, a distância do centro do polígono ao ponto médio de um dos lados.
- Ângulo central é o ângulo cujo vértice é o centro do polígono e cujos lados contém vértices consecutivos do polígono.
Apótema: OM,
Raios: OA,OF
Ângulo central: AOFApótema: OX,
Raios: OR,OT
Ângulo central: ROT - Medida do ângulo central de um polígono com n lados é dada por 360/n graus. Por exemplo, o ângulo central de um hexágono regular mede 60 graus e o ângulo central de um pentágono regular mede 360/5=72 graus.
Area de Poligonos Regulares
Traçando segmentos de reta ligando o centro do polígono regular a cada um dos vértices desse polígono de n-lados, iremos decompor este polígono em n triângulos congruentes.
A = a × Perímetro / 2
Comparando Áreas entre poligonos semelhantes
|
Sem comentários:
Enviar um comentário